THE ROLE OF HYDROGEN AND FUEL CELLS IN DELIVERING ENERGY SECURITY

Robert Steinberger-Wilckens, Jonathan Radcliffe, Naser Al-Mufachi, Paul E. Dodds, Anthony Velazquez Abad, Owain Jones and Zeynep Kurban

Imperial College London

Energy Security Definition(s)

Hydrogen Production: Variety of Sources

Achievement: increase in choice of feedstock

Energy Security – By Adding Flexibility

- * Adopting hydrogen increases energy diversity.
- * Hydrogen can be produced using a range of feedstocks/processes, including renewable electricity and biomass.
- * Price volatility of energy sources or supply disruptions can be ameliorated by switching to alternative feedstocks.
- * Energy imports can be reduced due to increased renewable energy employment, reducing political & economic dependence.

Conventional Energy Infrastructure

Risks: import dependence, loss of GDP to imports, political influencing

Future Hydrogen Energy Infrastructure

Achievements: increase in flexibility, reduction in import dependence, reduction of supply shortages

An Ultra-Low Carbon Recycling Scenario

Hydrogen to Energy: Fuel Cells

Achievement: reduction in energy dependencies due to more fuel options

- * Solid Oxide Fuel Cells (SOFC) convert a range of fuels from hydrogen over methane (natural gas), town gas (H₂ + CO), propane, and methanol, up to ethanol
- * 'internal reforming' converts hydrocarbon fuels (methane etc.) internally by recycling heat
- * result: very high electrical efficiencies >60% (net)

Enabling Technology

Achievement: novel options for safe operation of buildings and electricity grids

- * supply of grid support from Fuel Cell Electric Vehicles (FCEV)
- building electricity backup from FCEV
- linking electricity grid and gas grid
- * supplying portable power and off-grid power

Reversible Fuel Cells

- electrochemically speaking, fuel cell and electrolyser are the same device, run in two different directions
- integrating fuel cell and electrolyser in the same unit allows to support electricity grids with high renewable energy input at reduced investment

alkaline electrolyser converting electricity & water to hydrogen

alkaline fuel cell converting hydrogen to electricity & heat

Traditional Electricity System

Local Distribution

 $\Delta U = R * I$

Source: Lappeenranta University

Decentralised Electricity System

modified from: Lappeerilanta Oniversity

Distributed Energy Systems

Effects of Decentralised Electricity Generation

Advantages:

- Less transmission losses (up to 10% in low voltage grid)
- No need for new electricity lines as the local power demand rises
- Better reliability during grid disturbances (islanding)
- Self-sufficiency in energy

Disadvantages:

- Complex systems
- Grid maintenance becomes complex

Resilience of Distributed Systems

Cyber Attack on Distributed Systems

1,000,000 x 1 kW

- impact of cyber attack on central power station or grid very high
- impact and probability of CA on residential CHP very low
- effort of hacking 1,000,000 systems
- possible low level of protection of μCHP (Windows OS) and common software
- threats of Internet of Things

Decentralised Fuel Cell Infrastructure

Fuel cells support grid functions with respect to

- * Reduced distribution losses,
- * Increased reliability due to lower probability of total disruption,
- * Blackstart capability and the option to 'island' parts of a grid that are still intact following an outage,
- * Increased fuel flexibility by allowing for a variety of fuels, many of which are generated from renewable energy sources.

Politics of Energy Security

- * Energy security policy focuses on access to fossil fuel resources and on operating a stable electricity system. Other parts of the energy system receive very little attention.
- * The policy focus is short-term the next 5 years.
- * Low-carbon energy systems tend to be more infrastructureintensive than existing systems. Investments we make now in long-lived infrastructure could have long-term impacts on energy security.
- * There is a need to consider the long-term implications of moving to a low-carbon system on energy security.

Policy Support

- * Holistic approach to energy systems to develop a low-carbon and flexible energy system, with hydrogen and fuel cells included.
- * Implementation of a 'system architect' or 'clearing house' as a coordination body for an increasingly complex energy infrastructure.
- * Policy incentives that create a level playing field for hydrogen and fuel cells.
- * Policy indication on the future strategy for supplying heat and power to homes, businesses and industry.
- Increase funding for research on hydrogen and fuel cell technologies.

H2FC Potential

* how can hydrogen and fuel cells contribute to energy security in the EU energy system?

Like this:

- increasing the EU independence from fossil and imported energy sources,
- * increasing the stability of the EU economy by greatly reducing the risk induced by volatile energy import prices,
- * increasing the resilience of EU energy supply by reducing the risks from damage to the infrastructure (by natural incidents as well as malevolent interference).

Thanks for your Attention!

Any Questions?

r.steinbergerwilckens@ bham.ac.uk H2FCSUPERGEN

Robert Steinberger-Wilckens, Jonathan Radcliffe, Naser Al-Mufachi, Paul E. Dodds, Anthony Velazquez Abad, Owain Jones and Zeynep Kurban

